Appendix A

Overview of NIRS-systems from research

Туре	Lock- In	TDM	# CH	λ [nm]	LS Type	DET Type	d [cm]	Porta- ble	Wire- less	Attach- ment	ADC	Ref.
CW	No	Yes	32	735 850	32 LED	1 APD	4	Yes	No	neoprene hood	20 Hz 16 Bit	Lareau 2011 [38]
CW	Yes	No	22	754 830	8 LD	8 APD	3	Yes	No	600g head- set		Kiguchi 2012 [48]
CW	Yes	Yes		760 850	8 LED	8 PD	3	Yes	No	EEG-Cap	6.25 Hz	Piper 2013 [49]
CW	No	Yes	32+	760 850	32 LED	4 PD	2/4	No	Yes	EEG- NIRS- plastic chain	8 Hz 16 Bit	Safaie 2013 [15]
CW	No		16	730 805 850	4 LED	10 PD	2.5	No	No	Flex. PCB with cush- ioning	2 Hz	Bunce 2006 [14]
CW	Yes		1	670 890	1 LED	1 APD	3	No	No	Flex. Strap	250 Hz	Bauern- feind 2008 [50]
CW	Yes		288	780 830	18 LD	16 PD	4-8	No	No		$\begin{array}{c} 0.25Hz\\ 16Bit \end{array}$	Siegel 1999 [44]
CW	No	Yes	3	780 810 830	3 LD	1 PD						Benni 1995 [32]

Table A.1: NIRS-Systems overview (I): CW = Continuous Wave, TD = Time Domain, FD = FrequencyDomain, TDM = Time-Division Multiplex, # CH = Number of Channels, LS Type = Light SourceType: LED = Laser Emitting Diode, LD = Laser Diode, VCEL = Vertical-cavity surface-emitting laser,DET Type = Detector Type: APD = Avalanche Photodiode, PD = Silicium Photodiode, PMT = PhotoMultiplier Tube, PIN = Positive intrinsic negative photodiode, d = source - detector distance: ..x.. variable,ADC = Sampling rate and quantization depth.

Α

Туре	Lock- In	TDM	# CH	λ [nm]	LS Type	DET Type	d [cm]	Porta- ble	Wire- less	Attach- ment	ADC	Ref.
FD	Yes		3	775 810 850 905	1 LD	3 PMT	5	No	No			Rolfe 2000 [30]
FD	Yes		2	780 850	2 LD	1 PIN		No	No			Rolfe 2001 [51]
CW			56	780 880	48 LED	14 PD	1	No	No	Flex. PCB with cush- ioning	3 Hz	Vaithia- nathan 2004 [58]
CW	Yes	Yes	22	790 850	16 VCEL	8 PD	3	Yes	No			Atsumori 2007 [52]
CW	Yes			700 880	LED	APD	3-4	No	No		100 Hz 16 Bit	Coyle 2004 [18]
CW				735 850	LED	8 PD	3	Yes	Yes			Chang 2011 [56]
CW	No	Yes	2	730 850	1 LED	2 PD	2	Yes	No	Flexible PCB with sticky tape	10 Hz 12 Bit	Bozkurt 2005 [53]
CW	Yes			760 880	LED	APD	3-4	No	No	Seat fixa- tion	100 Hz 16 Bit	Coyle 2007 [20]
CW	No			778 813 867 904	LD	PMT		No	No			Cope 1988, 1991[3], [21]
CW	No	Yes	1	730 804 850	LED	PD	3,5	Yes	No	Velco straps	23 Hz 18 Bit	Chenier 2007 [54]
CW			16		8 LED	2 PD	1 + 0.5x	Yes	No	embedded silicon patch	2 Hz 16 Bit	Rajkumar 2012 [59]
CW	Yes	Yes	32+	785 830	32 LD	32 APD		No	No			Boas 2001 [45]
CW	Yes		12	760 880	24 LED	3 APD	3	No	No		$\begin{array}{c} 10Hz\\ 24Bit \end{array}$	Soraghan 2008 [19]
CW		Yes		760 850	LED	PD		Yes	No		40 Hz	Zhang 2009 [55]

Table A.2: NIRS-Systems overview (II): CW = Continuous Wave, TD = Time Domain, FD = FrequencyDomain, TDM = Time-Division Multiplex, # CH = Number of Channels, LS Type = Light SourceType: LED = Laser Emitting Diode, LD = Laser Diode, VCEL = Vertical-cavity surface-emitting laser,DET Type = Detector Type: APD = Avalanche Photodiode, PD = Silicium Photodiode, PMT = PhotoMultiplier Tube, PIN = Positive intrinsic negative photodiode, d = source - detector distance: ..x.. variable,ADC = Sampling rate and quantization depth.

a vai b At c Ev	D17			D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3		D2	D1		
an der Sluijs et al. (tsumori et al. (200 /erdell et al. (2005	Imagent	System ^c	Topography	UCL Optical	CW6	OEG-SpO2	FOIRE-3000	Brainsight NIRS	NIRSport	NIRScoutX	NIRScout	Genie	WOT ^b	ETG-7100	ETG-4000	fNIR1100w	fNIR1100		PortaLite	OXYMON MkIII ^a		Device
998).).	(ISS), USA		UK	(University College London),	(TechEn), USA	(Spectratech), Japan	(Shimadzu), Japan	(Rogue Research), Canada	(NIRX), USA	(NIRX), USA	(NIRX), USA	(MRRA), USA	(Hitachi), Japan	(Hitachi), Japan	(Hitachi), Japan	(fNIR Devices), USA	(fNIR Devices), USA		(Artinis), Netherlands	(Artinis), Netherlands		(Manufacturer), country
	16 to 60			10 to 160	10 to 50	1.52/12.2	7.5 to 40	100	6.25 to 62.5	6.25 to 62.5	6.25 to 62.5	5.02	U	10	10	2	2		50	250	[Hz]	Time-res.
	16 or 32			16	4 to 48	6	4 to 16	4 to16	8	48	8 or 16	4 to16	8	40	18	1	1/1/4		ω	32		#Emitter
	4 or 8			16	8 to 32	6	4 to 16	8 to 32	8	32	4 to 24	8 to 32	8	40	8	2/4	2/4/10		1	16		#Detector
	t			f	f	С	t	f	t + f	t + f	t + f	С	t + f	f	f	t	t		t	t		MUX
	a			a	a	30/25/15-40	a	a	a	a	a	a	30	20/30	20/30	20/25	20/25/25	30 + 35 + 40	20 + 25 /	a		SDS [mm]
	Laser			Laser	Laser	LED	Laser	Laser	LED	LED	LED	LED	Laser	Laser	Laser	LED	LED		LED	Laser		E-tech
	690, 830			780, 850	690, 830*	770, 840	780, 805, 830	685, 830, (808)*	760, 850	760, 850	760, 850	700, 830	705, 830	695, 830	695, 830	730, 850	730, 850		760, 850*	760, 850*	[nm]	Wavelengths
	PMT			APD	APD	PD	PMT	APD	PD	PD	PD	PD	PD	APD	APD				PD	APD		D-tech
	Raw			Raw	Raw	Raw	OD	Raw	Raw	Raw	Raw	Raw	Raw	Raw	Raw	Hb	Hb		Raw	Raw		Data
	n			n	n	y *	n	n	У	n	n	У	У	n	n	У	n		У	n		Wear
	У			n	У	n*	n	n*	У	У	У	n	n*	У	У	n	n		У	У		Œ

Figure A.1: Overview of commercial NIRS-Devices, taken from [11].

89

Figure A.2: PCB prototyping process. A: printing layout on plastic film, B: covering copper PCB, C: UV-light exposure, D: etching in diluted sodium hydroxide, E: exposed UV-lacquer is removed, F: etching in iron (III) chloride solution, G: removing lacquer with ethanol and drilling vias.

Figure A.3: fNIRS module full schematics part a.

Author	$>\!650$	> 675	>700	>725	>750	>775	>800	>825	>850	>875	>900
Piper2013 [49]					760				850		
Safaie2013 [15]					760				850		
Kiguchi2012 [48]					754			830			
Chang2011 [56]				735					850		
Lareau2011 [38]				735					850		
Kanoh2009 [62]						780		830			
Zhang2009 [55]					760				850		
Bauernfeind2008 [50]	670				100				000	890	
Soraghan2008 [10]	010				760					880	
Kowoguchi2008		680			100			830		000	
Atawaguciii2008		080				700		000	850		
Atsumori2007 [52]						790			830	000	
Coyle2007 [20]				700		760			050	880	
Chemer2007 [54]				730					850		
Bunce2006 [14]				730					850		
Bozkurt2005 [53]				730					850		
Vaithianathan2004 [58]						780				880	
Coyle2004 [18]			700							880	
Sato2004 [69]		680						830			
Strangman2003 [66]					760			830			
Rolfe2001 [51]						780			850		
Boas2001 [45]						785		830			
Yamashita2001 [68]	660							830			
Rolfe2000 [30]					775				850		
Siegel1999 [44]						780		830			
Benni1995 [32]						780		830			
Cope1991 [21]						778			867		
Okui2005 [70]		690			750			830			
Funane2009		690			775			825			900
Correia2010 [72]			704							887	
Yamashita2001 [68]						780		830			
OXYMON Mk III. Ar-											
tinis					760				850		
PortaLite, Artinis					760				850		
fNIR1100, fNIR De-				700					050		
vices				730					850		
ETG-4000, Hitachi		695							850		
ETG-7100, Hitachi		695							850		
WOT, Hitachi			705					830			
Genie, MRRA			700					830			
NIRScout(X), NIRx					760				850		
Brainsight NIRS, R.		ao -						0.00			
Research		685						830			
FOIRE-3000, Shi-						790		0.20			
madzu						180		830			
OEG-SpO2, Spectrat-					770			840			
ech					110			040			
CW6, TechEn		690						830			
UCL Optical Topogra- phy, UCL						780			850		
Imagent, ISS		690						830			
	$>\!650$	> 675	>700	>725	>750	>775	>800	>825	>850	>875	>900

 ${\bf Table \ A.3: \ Overview \ of \ wavelength \ pairs \ and \ selection \ optimization \ in \ fNIRS \ systems. }$

Figure A.4: fNIRS module full schematics part b.

Figure A.5: fNIRS module layout, layers 1 & 2 (top).

Figure A.6: fNIRS module layout, layers 3 & 4 (bottom).

Figure A.7: fNIRS mainboard full schematics part a.

Figure A.8: fNIRS mainboard full schematics part b.

Model	Wave- lengths		Max I _F		Max pulse I _P		Typ. Total rad. Power		Half width Δλ		View. Half angle	Туре
	λ1	λ2	[mA]		[mA]		[mW]		[nm]		[deg]	[mm]
L760/850-04A	760	850	100	100			15	18	30	35	+-20	5 Mold
L760/850-38	760	850	75	75			16	18	30	35	+-40	3 Mold
L770/840-40D59	770	840	100	100	500	500	12	9	28	32	+-55	4.65 Stem
SMT735/850	735	850	75	75	300	300	10	18	20	35	+-55	2.7 SMD
L750/850-04A	750	850	100	100			15	18	30	35	+-20	5 Mold
L760/840-05A	760	840	100	100			15	18	30	35	+-40	5.4 Stem
L760/850-05A	760	850	100	100			15	18	30	35	+-40	5.4 Mold

Figure A.10: Comparison of available LED alternatives.

Figure A.11: Technical drawing NIRS module body housing. Units are [mm].

Figure A.12: Technical drawing NIRS mainboard body housings. Units are [mm].

101

Figure A.13: LabView eQSM block diagram overview.

Figure A.14: Evaluation of optimal current regulator decoupling capacitor value.