
3.7 Software Design

In the following subsections, the software design for both microcontroller units and for
the user front end at the PC are explicated. Fig. 3.23 shows the software design concept
for the instrument.

NIRS Module NIRS Mainboard PC

Analog Signal

Hardware
control

ADC
SPI

Interface

UART
Interface

Data
Block

Data Display

User Inputs
Module & Instrument Control,

Channel Administration

Figure 3.23: Software concept for the system.

The NIRS module software comprises mainly initialization and configuration of the hard-
ware components and handling the control signals coming from the mainboard.
The NIRS mainboard software is based on a far more comprehensive design and includes
the implementation of the communication protocols, handling of control signals from the
user and (cyclic) generation of corresponding control signals for the NIRS mainboard.
It also processes the converted NIRS data and creates identifiable data packages for the
further processing on the PC.
The NIRS instrument can either be used and controlled with a simple operating system
terminal program (or any other software that can send and process data via serial inter-
face such as MathWorks Matlab), or with a graphical user interface that enables control,
processing, logging and display of the received data.

The software for both microcontrollers is written in C and compiled and flashed with
Atmel Coorporation AVRStudio v6.1. The software for the graphical user interface is
based on National Instruments LabView and can be used as a stand-alone executable
with a NI runtime environment.

3.7.1 NIRS Module

The NIRS module is controlled by the mainboard or any other custom data acquisition
hardware using a simple 4Bit parallel interface as shown in tab. 3.3.

The bits CH1:CH0 represent the binary number of one of the four corresponding physical
NIRS channel that is to be activated.
A rising edge on the TRIG line activates the channel that is selected with the CH1:CH0
bits, always beginning with 750nm. Each subsequent rising edge toggles the activation

3.7. Software Design 49

of both wavelengths of the selected channel, 750nm and 850nm.
When the RST line is pulled up, the multiplexer is deactivated and all channels are turned
off. The next rising edge of the TRIG line starts the process all over again, beginning
with 750nm.

Bit # 3 2 1 0

Name RST TRIG CH1 CH0

µC Pin PD4 PD3 PD2 PD1

Table 3.3: Control Bits for NIRS module.

Fig. 3.24 shows a flowchart of the main routine on the NIRS module microcontroller.
After hardware reset/powering up, the external control interrupt for the TRIG line is ini-
tialized by configuring the External Interrupt Control Register for rising edge detection.
Next, the PWM module of Timer/Counter2 is configured and enabled for lock-in mod-
ulation/demodulation. The PWM module is configured for toggle on compare match in
phase correct mode for a 50% duty cycle PWM signal with a frequency of 3.125 kHz.
Then, the analog-to-digital converter ADC7 at the signal monitor line for PGA gain and
current adjustment (out-of-range indication) is initialized and enabled for conversion in
free-running mode.
After that, Timer/Counter 1 is configured for output compare interrupt request: As soon
as a time threshold of 10 seconds is exceeded with no alteration of the multiplexer setup
during that time, the currently active channel is disabled until reactivated by the main-
board. This makes the NIRS module suitable even for use without a TRG line. 10 seconds
after a stop of the instrument, the module deactivates itself automatically.

Now, a calibration process can be started. The calibration routine is implemented for
the sake of completeness but is not used at this time, as a fixed configuration of the PGA
and DAC is used that is based on experimental determination of the optimal levels. For a
maximum SNR of the device, primarily light emission and secondarily post-amplification
should be maximized. The experimentally determined configurations can be used as fixed
maximum levels as long as experiments do not indicate otherwise, which has so far not
been the case: If the device is used on people with very high skin pigmentation or dark
and thick hair, running the calibration cycle might further optimize the PGA/DAC con-
figuration.
Using fixed levels, the current regulator DAC level is set to maximum (level 4 of 4, 100mA)
and the PGA to a gain of G = 44.
Using the calibration cycle, the current level is initialized to maximum and then the PGA
gain is reduced step-by-step until the out-of-range indication is false. As long as this is
not the case, the current level is reduced by one step and the PGA procedure is repeated.

Now, a multiplexer test routine is started, enabling each channel and each wavelength
for one second. This allows the user to manually check whether all channels are fully
functional or hardware faults prevent the use of a certain channel.
Then, interrupts are globally enabled and the device enters an idle state. Each trigger
from the NIRS mainboard on the TRG line then starts an interrupt service routine (ISR)

50 Chapter 3. System Design

START

Initialize PWM
Module

Initialize ADC

Initialize External
Control Interrupt

Calibration
Cycle/Set PGA

and DAC

Enable Interrupts

IDLE

While (true)

true

Interrupt Service
Routine (ISR):

Channel Control

Test, then disable
MUX

Interrupt Service
Routine (ISR):
Timer Reset

Initialize Reset
Timer

Figure 3.24: Flowchart of the NIRS module main routine.

for channel configuration and activation (see fig. 3.25).

When the ISR is called, the channel being currently active is turned off by a global MUX
deactivation. Then, the new channel configuration is read from the CH1:0 bits at Port D
pins PD2:1.
Depending on a global toggle bit (GTB) that indicates the last active wavelength, the
multiplexer is then updated. The first rising edge (ISR) following a new physical channel
selection results in a MUX configuration for the 750nm wavelength current regulator of
the corresponding channel and the toggle bit GTB is set. The second rising edge (ISR)
results in a MUX configuration for the 850nm wavelength of the same channel.
Thus, for the acquisition of one fNIRS datapoint at a single location, the corresponding
NIRS channel number has to be configured (CH1:0) and two subsequent rising edges at
the TRG line enable the access to the analog signals for the two respective wavelengths.

3.7. Software Design 51

START ISR

Global Toggle Bit
(GTB)

END ISR

Read Port
Ctrl. Signal

(CH0:1)

GTB = 1 GTB = 0

0 1

Enable MUX Enable MUX

Disable MUX

Set MUX for
Channel #
λ=750nm

Set MUX for
Channel #
λ=850nm

Figure 3.25: Flowchart of the NIRS module ISR.

3.7.2 NIRS Mainboard

The main routine of the NIRS mainboard uses several separately developed functional
blocks, of which the most important are:

• LTC2486 ADC configuration and SPI communication module
• NIRS channel administrator
• UART-ring-buffer-based communication interface
• UART-received-data processing module
• UART data transmission package handler

The LTC2486 ADC transmits the conversion result of 16 bits plus sign bit in a 24 bits
word, receives a 16-bits-long input configuration word and a start of conversion command
through the SPI interface. The principal operation is depicted in a state transition diagram
in fig. 3.26
As the SPI interface is a synchronous interface, the ADC has to be configured for the next
conversion when the last conversion result is read. Using information from the NIRS chan-
nel administrator, the implemented LTC2486 ADC configuration module generates the
configuration word according to the next channel that is to be activated and to settings
configured by the user. These user settings are either speed mode activation/deactivation
(2x sampling rate, no internal calibration) or temperature sensor requests.

52 Chapter 3. System Design

Figure 3.26: LTC2486 State transition diagram, taken from LTC2486 datasheet.

When called, the SPI communication module sends a 24 bits configuration word (16 bits
configuration + 8 dummy bits), saving the received 24 bits last conversion result from
the ADC.

The channel administrator is a FIFO-buffer-based function implemented for the auto-
mated generation of NIRS module control signals dependent on a user-defined selection
of all available NIRS channels. If, for example, only two of four channels of a NIRS mod-
ule should be used (allowing a higher sampling rate), the user can select those channels
during configuration. The channel administrator then only considers the selected channels
for channel activation control signals.

For the UART interface communication, a fully functional ring-buffer- and interrupt-
based UART module was implemented and tested. However, to avoid race conditions in
the complex main routine of the mainboard, a more sophisticated UART AVR ring buffer
library by P. Fleury [79] was used for the final mainboard software.

Instrument control data that is received from the user PC via Bluetooth is read from
the UART receive buffer and processed in a data processing module. This module is
implemented as a simple conditional switch-case loop that processes the control bytes.
The control bytes are single ASCII characters and will be described in detail in the next
subsection (Console User Interface).

The data received from the ADC is managed by a data transmission package handler that
adds channel/configuration information for identification and a timer value as timestamp
to the ADC value and puts the data package into the UART transmit buffer. The data
packages are 23 bytes long, ASCII-formatted, provide semicolon-separated values (CSV)
and are built up as follows:

M # ; C # ; L # ; S # ; ADCVAL ; TIMERVAL CR LF

3.7. Software Design 53

The 12Byte header assigns the configuration information to the submitted ADC and
timer values: Number # (0-3) of the active NIRS module M, number # (0-3) of the ac-
tive channel C on this module, number # (0-1) of the active wavelength L with 0: 750nm,
1: 850nm and speed mode S active (#:1) or inactive (#:0). Subsequently, the 16Bit ADC
value (ADCVAL) in hexadecimal format and the 16Bit timer value (TIMERVAL) in hex-
adecimal format are submitted, followed by a carriage return (CR) and line feed (LF) flag.

In the following, the aforenamed functional modules are put into the context of the main
routine on the NIRS mainboard (see fig. 3.27).

START

Ring Buffer empty

16Bit Timer ISR:
timercount ++

Initialize UART

Initialize SPI

Initialize Timer

Initialize ADC

Reset Bluetooth
Module

Get Control
Data from

UART Receive
Ring Buffer

Frame or Overrun
Error?

UART send
Error Message

Process Control
Data

False

False
In Running Mode

Get Temperature

NIRS Module
Administration &
Data Acquisition

Process

True

True False

Get and Process
Temperature

Set
Ch. Admin. Start/
Empty Buffer Flag

True False

Enable Interrupts

True

Figure 3.27: Flowchart of the NIRS mainboard main routine.

54 Chapter 3. System Design

After power-up or hardware reset, the AtMega644 UART interface is initialized and con-
figured for a baud rate of 9600 bps, 8 data bits, 1 stop bit and no parity bits.
Subsequently, the SPI interface is initialized and enabled with the AtMega644 being con-
figured as master, followed by the initialization of the 16Bit timer and trigger line ADC.
The 16Bit timer is configured with a 1/1024 prescaler for output compare interrupt
requests when the Output Compare Match Register A value 0d195 is matched. This con-
figuration results in an incrementation of the NIRS signal timestamp every 10ms. This
time resolution was judged to be sufficient for later NIRS signal evaluation and applica-
tions.
The trigger line ADC is configured for free running, left adjust result conversion, allowing
to quickly readout the 8 most significant bits for threshold comparison. As mentioned in
subsection 3.5.4, this enables the logging of external events that are expressed as analog
signals at the optional mainboard input, e.g. of trial/experiment start/stop signals.
After the initialization of all elements is finished, interrupts are globally enabled, the
AMB3200 Bluetooth module is being reset and the main loop is entered. Incoming data
packages from the Bluetooth module can now be processed.

The main loop begins with the access of the UART receive buffer, requesting one data
byte.
If there is data in the buffer and no frame or overrun errors were detected, the data
is processed and the instrument is configured (e.g. started, stopped, etc.) according to
the control byte. In case of an error, error messages are sent to the user via the UART
interface. If the receive buffer is empty, which is the case in most of the cycles, a running
mode flag is checked:
If the device is not in running mode, e.g. stopped or not having been started yet, a get
temperature flag is checked. This flag is set when the user requests a temperature mea-
surement by sending the according control byte. If this flag is true, the ADC is configured
for temperature readout and the received data is extracted and sent to the user.
If the device is not running and no temperature request has been made, the device sets
a channel administrator start flag that resets the channel administrator to the starting
point and an empty buffer flag that works as an indicator for the acquisition process. If
the empty buffer flag is set, the acquisition process discards the first ADC value in a new
measurement, as it is the result of an obsolete conversion (see fig. 3.26)

If the device is in running mode, however, the NIRS channel administration and ac-
quisition process is executed. Fig. 3.28 depicts the details of this process.

First, the integrated threshold ADC for event logging is accessed and the received value
is processed by a threshold ADC handler. In case the signal crosses the threshold to-
wards the top, a signal-over-threshold message is sent (”#SSOT”) to the UART transmit
buffer, in case the signal falls below the threshold, a signal-under-threshold message is
sent (”#SSUT”).

Next, the channel administrator is called. It works on two typedef structures which carry
the complete actual and last active configuration data and information of the instrument.
Whenever called, it calculates the next active channel configuration for the LTC2486
ADC configuration module and saves the last active configuration for the assignment to
the conversion result that is going to be received in the next cycle.

3.7. Software Design 55

START

AD Conversion
finished

Get Threshold ADC
value

Threshold ADC
handler

Channel
Administrator

NIRS ADC
configuration

data generation

Set Channel on
NIRS Module
Control lines

Activate SPI Slave
(NIRS ADC)

Deactivate NIRS
Module

Wait (1ms)

Activate NIRS
Module

Wait (4ms)

SPI
Transmission:

Get ADC value,
configure for

next conversion

Deactivate SPI Slave
(NIRS ADC)

Empty Buffer
Flag

Empty Buffer Flag =
False

END

Extract ADC Data

Build and send
Data block via

UART

True

False

False

True

Figure 3.28: Flowchart of the NIRS mainboard module administration and acquisition routine.

Using the newly generated configuration data, the LTC2486 ADC configuration process
produces the 16Bit configuration word for the ADC and the bits for the next channel
(CH1:0) are set on the parallel 4Bit interface to the active NIRS module.
Now, the NIRS ADC is activated, allowing the observation of the status of the running
conversion on the SDO line of the SPI interface. When the conversion is finished, the
currently active NIRS module is deactivated (TRG control line is pulled low). After a
delay of 1ms, the NIRS module is reactivated (TRG control line pulled high, rising edge)
and thus the next configured channel is turned on on the NIRS module. A dwell time of
4ms is then applied for stabilization of the current regulators and the photodetector.

56 Chapter 3. System Design

With the new configuration being active, the SPI transmission is started: The conversion
result for the last channel configuration is received and the new ADC configuration is
sent. After the transmission is finished, the SPI slave is deactivated for low-power con-
version.
The received data is now either discarded, when the above-mentioned empty buffer flag
is set, or processed by a function for the extraction of the ADC value. The extracted
ADC value together with the typedef structure for the last active configuration informa-
tion are then processed by the data transmission package handler for 23Byte data block
generation and the data block is put in the UART transmit buffer.

3.7.3 Console User Interface and Control Commands

The communication interface of the NIRS instrument is designed for both manual console
inputs and automated software control. To achieve this, the control data interface uses
the ASCII format, and data can thus be easily read and generated by the user on a key-
board. The instrument sends instructions and information to the user after configuration
and is controlled by a set of single-byte ASCII characters that are processed by the NIRS
mainboard’s data processing module:

• ”G” - Go: Starts the running mode of the device. The timer is reset and a new
acquisition process is started.

• ”S” - Stop: Stops the running acquisition. All NIRS modules are deactivated.
• ”E” - spEed mode: Toggles the ADC speed mode (maximum sampling rate).
• ”P” - Pause: Pauses the running acquisition process without stopping the timer.
• ”C” - Configuration: Enters configuration mode. Once the configuration mode is

entered, the identification numbers of the channels that are to be used in the next
acquisition process have to be provided, followed by an ”X”for leaving the configuration
mode.

• ”R” - Read configuration: Reads the configuration data. The active configuration
matrix of the instrument, showing the activation/deactivation statuses of all channels,
and the speed mode status is sent to the user.

• ”T” - Temperature request: Sends a temperature measurement request. The in-
strument will then send back a temperature measurement in the next cycle.

• ”H” - Help: The device sends the above-mentioned list of commands with short
comments and syntax help.

Fig. 3.29 gives an example of the typical console usage of the device. The user control
inputs are shown on the left, and the the data received from the instrument is shown on
the right.

3.7.4 LabView User Interface

For the final stage of development and testing as well as for later evaluation and use, a
stand-alone graphical user interface (GUI) was programmed using LabView 2012.
To enable asynchronous processing and quick code execution as well as to avoid GUI
lockup, this program is build on an event-based queued state machine (eQSM) archi-
tecture. At first glance, the eQSM architecture is a complex approach but significantly
facilitates programming mid-sized to advanced projects so that it is nowadays widely used
as a standard LabView architecture.

3.7. Software Design 57

Figure 3.29: Typical console usage example.

In the following, the architecture of the designed LabView NIRS user interface will be
briefly explained and the GUI functions will be described.

The eQSM architecture is based on a producer-consumer principle using a combination
of three basic LabView structures: Events, queues and state machines.
Queues are structures that process and transfer data packages in a FIFO manner. An
element of a virtual instrument (VI), e.g. a subVI, can insert data into a queue at any
time and independently from its own position in the VI. Once called, another element can
access this data from any position in the VI. This enables data transfer between loops
without the generation of waiting conditions, allowing asynchronous processing. Hence, a
queue acts as a global variable that can buffer data. Once a process accesses an element in
the queue, it automatically removes the element from the queue, thus preventing multiple
readouts of the same element (e.g. one acquisition data point).
The eQSM is a state machine that is controlled by messages from a message queue. User
events as well as any other processes in the program can create these messages. The state
machine itself puts information, such as acquired data, in a data queue. The data of this
queue is then processed by a consumer loop for analysis, display, etc.

58 Chapter 3. System Design

The NIRS LabView graphical user interface architecture using the eQSM architecture
(see fig. 3.30) is therefore based on

Figure 3.30: LabView eQSM architecture.

• An event handler loop that processes user input events and converts them into mes-
sages for the queued state machine, inserting them into the message queue. It also
sends basic control signals to the NIRS instrument, such as ”G”o, ”S”top, etc.

• A queued state machine that reads the messages and acts as data producer. It processes
the data from the NIRS instrument, handles errors, idle states, etc. and inserts the
data from the instrument to the data queue.

• A data processing loop that is the data consumer, retrieving the data elements from
the data queue. The processing loop logs, filters and displays the measured data and
can execute further mathematical operations, such as the calculation of the modified
Beer-Lambert Law (MBLL).

The communication between the graphical user interface (GUI) and the NIRS instrument
is implemented using basic virtual instrument software architecture (VISA) VIs and func-
tions provided by LabView. For an initial overview of the software implementation, see
the block diagram in the appendix (fig. A.13). Due to the complexity of the implemented
eQSM, please refer to the LabView files on the annexed data carrier for a detailed docu-
mentation of the software implementation.

Fig. 3.31 shows the finished GUI for the NIRS instrument. The software has been com-
piled and can be used as stand-alone executable together with a LabView and a VISA
runtime environment that both are available for free on the National Instruments website.
The instrument is controlled by buttons and a configuration matrix that represent the
implemented ASCII control codes: Start, Stop, Get Temperature, Speed Mode and Con-
figuration Transmission.
When the program is started, first a VISA connection has to be established, using the

3.7. Software Design 59

corresponding emulated serial port from the operating system’s Bluetooth adapter. The
connect button then opens the communication channel between GUI and the NIRS in-
strument. To close the connection, a disconnect button was implemented.
After the communication channel has successfully been established, the current configu-
ration data (active channels and speed mode status) is read from the device using the ”R”
command and the configuration is displayed in an interactive channel selection configura-
tion matrix (green lamps). Clicking on one of the available channels (Ch0-3, Module 0-3)
toggles the activation of this channel. Using the Configure button, a new configuration is
transmitted to the instrument.

Figure 3.31: LabView NIRS software - graphical user interface.

At the very top of the GUI window, a ”COM-Receive” window is implemented for display
of the received and unprocessed console data from the device.
Right below, each channel can be selected for raw data display in a graph with selectable
time window size (usually 100 samples). In the picture, channel 2 of module 0 is active
and the two signals from both NIR wavelengths are shown. The peaks in the signals are

60 Chapter 3. System Design

the result of cardiac cycle pulse waves.

Below that, the data from each active channel can be shown after application of the
modified Beer-Lambert Law (MBLL). The parameters of the MBLL (DPFs, d, extinc-
tion coefficients) can be configured in the bottom left corner and have to be submitted
once before the display can start. For the sake of completeness, all 16 NIRS channels are
implemented graphically - but due to the extent of this work, the MBLL calculation is
implemented only for four channels (CH0-3 of module 0) in the block diagram.
Also, a control for digital filters is implemented in the GUI that allows configuration of
high- and low-pass filters for signal filtering. These filters have not been implemented so
far as the GUI was used only for qualitative signal evaluation and raw data acquisition:
Further data processing was done with matlab scripts.

To log the acquired data, a saving routine was implemented. When called, the routine
creates a log file with a header carrying all relevant configuration and experimental infor-
mation (current date and time, active channels, speed mode, ...) and a data block carrying
the acquired data streams in a semicolon-separated CSV format.

	System Design
	Software Design
	NIRS Module
	NIRS Mainboard
	Console User Interface and Control Commands
	LabView User Interface

